Spatial dependence in spatially continuous data

- Spatial interpolation assumes that the data exhibit positive spatial autocorrelation.
- Single-scale autocorrelation measures, such as the global Moran's I statistic, are not well-suited for spatially continuous data due to its smooth nature, where neighborhoods are not well-defined.
- Consequently, a measure that quantifies autocorrelation at different scales is required.

Variographic analyisis

We define a binary spatial weight matrix as:

$$w_{ij}(h) = egin{cases} 1, ext{if} \, d_{ij} = h \ 0, ext{otherwise} \end{cases}$$

2025 Zehui Yin

Variographic analyisis

Autocovariance:

$$C_z(h) = rac{\sum_{i=1}^n w_{ij}(h)(z_i^2-ar{z})(z_j^2-ar{z})}{\sum_{i=1}^n w_{ij}(h)}$$

Semivariance:

$$\hat{\gamma}_z(h) = rac{\sum_{i=1}^n w_{ij}(h)(z_i-z_j)^2}{2\sum_{i=1}^n w_{ij}(h)}$$

Covariogram and semivariogram

Covariogram:

The autocovariance, $C_z(h)$, and semivariance, $\hat{\gamma}_z(h)$, are related as follows:

Semivariogram:

$$C_z(h)=\sigma^2-\hat{\gamma}_z(h)$$

where σ^2 is the sample variance.

Kriging

The theoretical spatial continuous process can be expressed as: $z_i = f(u_i,v_i) + \epsilon_i$

To interpolate, we use: $\hat{z_i} =$

$$\underbrace{\hat{f}\left(x_{p},y_{p}
ight)}_{=}+\hat{\epsilon_{p}}$$

a smooth estimator, e.g., trend surface

Here,
$$\hat{\epsilon}_p = \sum_{i=1}^n \lambda_{pi} \epsilon_i$$
 and $\epsilon_i = z_i - \hat{f}(x_i, y_i)$.

The expected mean squared error or prediction variance is: $\sigma_{\epsilon}^2 = E[(\hat{\epsilon}_p - \epsilon_i)^2].$

The expectation of the prediction errors is zero (unbiassedness) Find the weights λ that minimize the prediction variance (optimal estimator).

Activities for today

- We will work on the following chapter from the textbook:
 - Chapter 36: Activity 17: Spatially Continuous Data III
 - Chapter 38: Activity 18: Spatially Continuous Data IV
- The hard deadline is Friday, March 28.

Reference

 https://pro.arcgis.com/en/proapp/latest/help/analysis/geostatisticalanalyst/understanding-a-semivariogram-the-range-sill-andnugget.htm